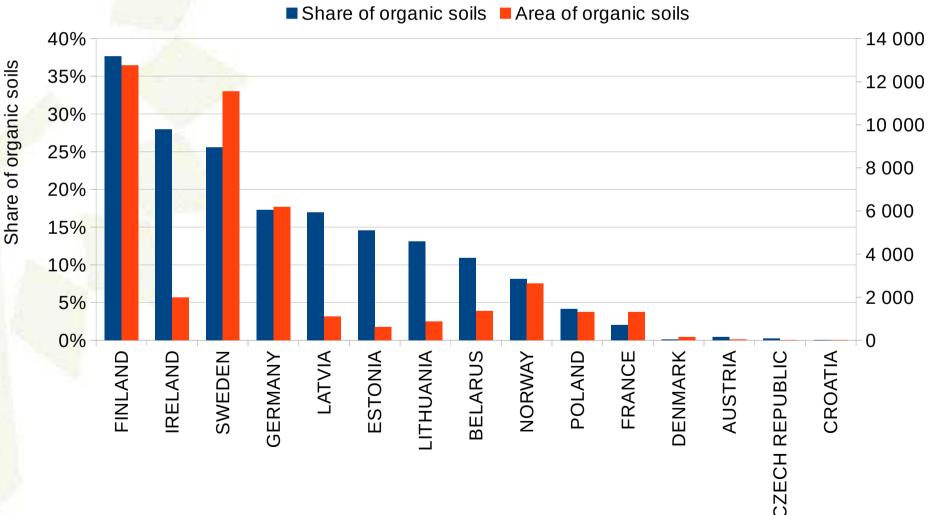
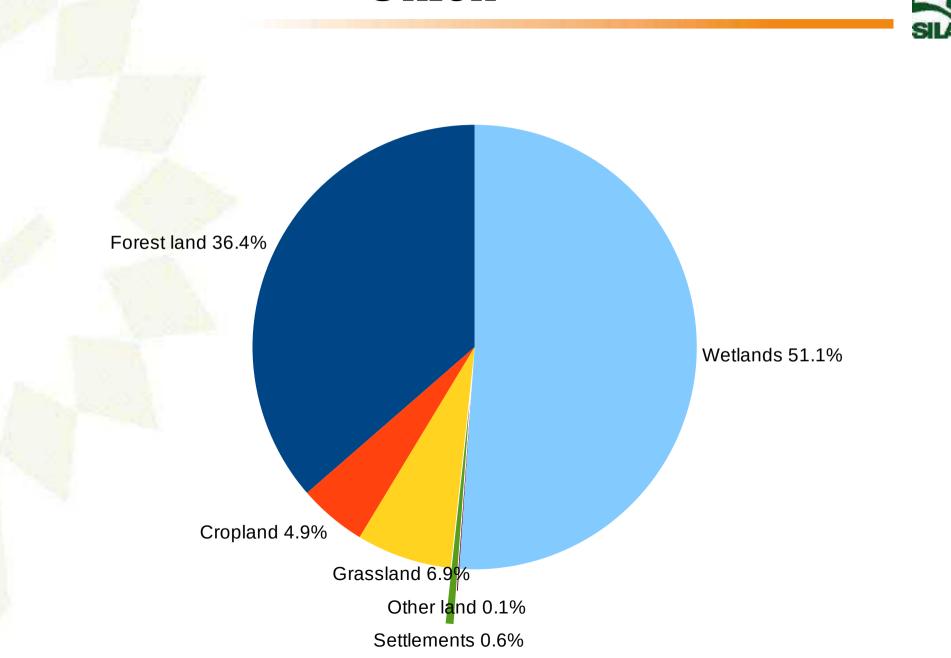
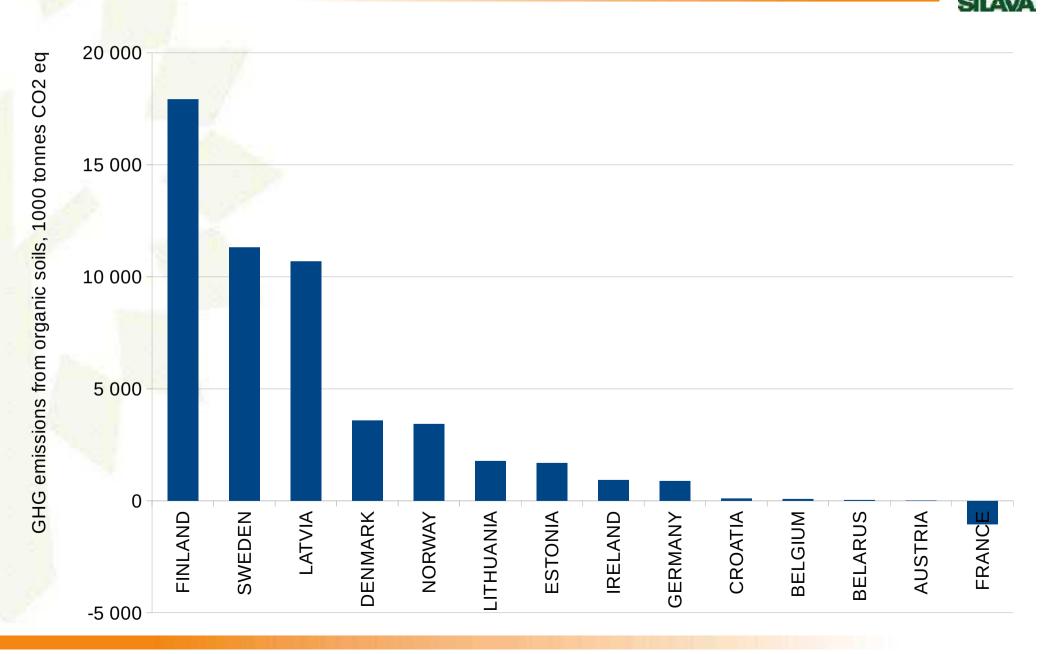
Greenhouse gas (GHG) emissions from peatlands & organic soil related research in Latvia


The Baltic Peat Producers Forum Riga, Latvia September 14, 2017

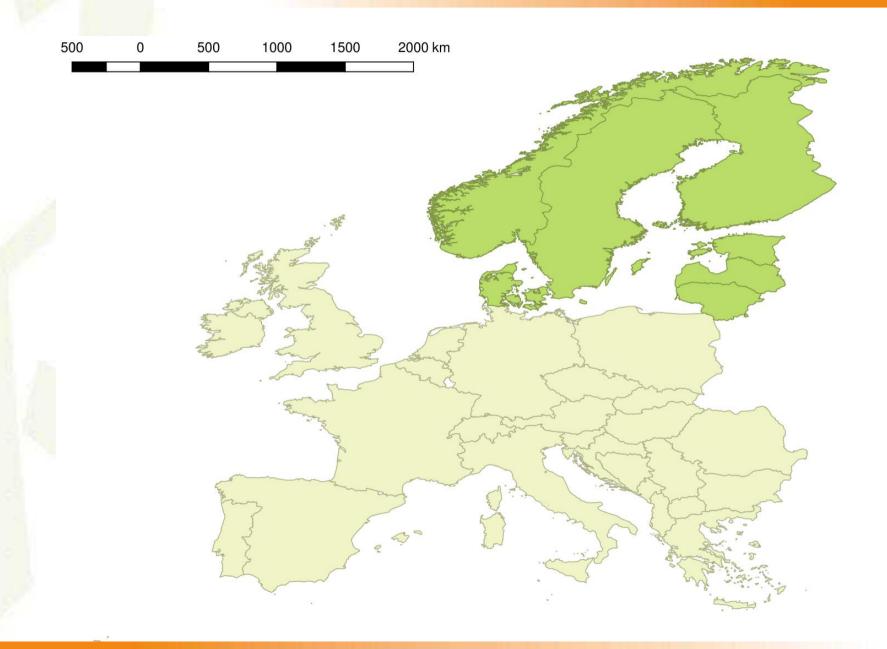
Andis Lazdiņš, Ainārs Lupiķis, Gints Spalva, Ieva Bebre Latvian State Forest Research Institute "Silava" e-mail: andis.lazdins@silava.lv

The studies presented here are implemented with support of the LIFE REstore project LIFE14 CCM/LV/001103


Area & share of organic soils in European countries according to GHG inventory reports

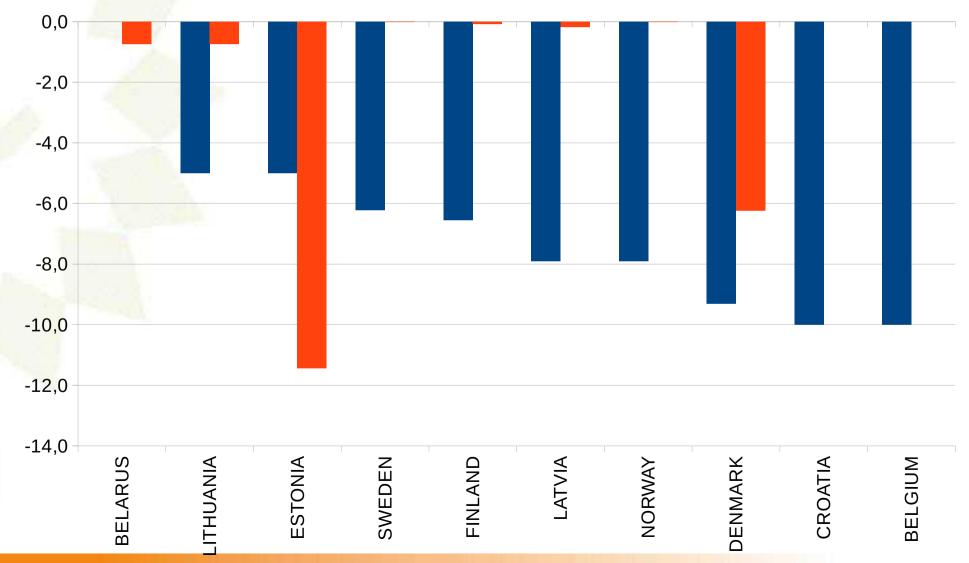


Area of organic soils, 1000 ha


Distribution of organic soils in European Union

GHG emissions from managed organic soils in 2015

Countries with the largest emissions from **managed** organic soils



SILAVA

Carbon stock changes in managed organic soils in European countries according to GHG inventories

Cropland remaining cropland

Emission factors for cool temperate moist climate zone according to IPCC 2014 Wetlands supplement

GHG	Nutritiona l regime	Forest	Cropland	Grassland	Rewetted area	Peat extraction fields
CO2	Poor	9.53	28.97	19.43	-0.84	10.27
	Rich	9.53	28.97	22.37	1.83	10.27
DOC	Poor	1.1	1.1	1.1	0.84	0.77
	Rich	1.1	1.1	1.1	0.84	0.77
CH4	Poor	0.06	0	0.04	6.9	0.14
	Rich	0.06	0	0.38	16.2	0.14
CH4 from ditches	Poor	0.14	1.46	1.46	0	0.68
	Rich	0.14	1.46	1.46	0	0.68
N2O	Poor	1.31	6.09	2.01	0	0.14
	Rich	1.31	6.09	3.84	0	0.14
Kopā	Poor	12.14	37.61	24.05	6.9	12
	Rich	12.14	37.61	29.14	18.88	12

Afforestation of transitional bog in early 60^{ths} in Jaunkalsnava area, Veseta river basin

Carbon stock changes in soil

Growth conditions	Dominant species	0-10 cm	10-20 cm	20-40 cm	40-80 cm	Total
Drained forest	Norway spruce	80.4	70.4	133.0	248.9	537.0
	Scots pine	65.5	63.1	116.9	226.0	477.5
	Average	74.4	67.5	126.6	239.7	513.2
Transitional bog	Norway spruce	35.3	31.7	61.0	174.6	302.6
	Scots pine	39.3	38.3	83.5	196.6	357.6
	Average	38.0	36.1	76.0	189.3	339.3

- **Carbon stock in soil increased** significantly after drainage. even if the upper 25.7 cm layer is considered to have zero carbon.
- The increase of carbon stock in all pools is 106 tons ha⁻¹ (corresponding to removals of 7.6 tons CO₂ ha⁻¹ annually).
- CO_2 emissions according to study equals to 0.52 tonnes CO_2 -C ha⁻¹ yr. Reduction of emissions due to implementation of the study results equals to 3.7 mill. tonnes CO_2 eq yr (about 56 mill \in according to projected cost of the removal unit in 2020).

Estimation of area of organic soils in Latvia in cropland & grassland

Recalcuated GHG emissions, ktonnes CO2 eq yr Reduction of GHG emissions -500 due to recalculation, ktonnes CO2 eq yr -1000 -1500 -2000 -2500

■CO₂ ■N₂O ■CH₄

Year

LIFE REstore project

Identification of areas of extracted peatlands SILA 50 50 100 150 200 km 0

Main activity data in Latvia characterizing impact of peat industry on GHG emissions

- Total area of extracted peatlands **50.5 kha**, including:
 - relatively dry areas where peat extraction is terminated –
 20.8 kha;
 - areas where peat extraction continues or is terminated recently
 15.0 kha;
 - water bodies 5.8 kha;
 - former peat quarries 2.5 kha (mostly afforested areas);
 - flooded areas 1.4 kha;
 - po<mark>n</mark>ds **0.4 kha**.
 - We still don't know remaining area of organic soils.

SILAVA

Areas where peat extraction is continuing

Flooded areas

Measurments of GHG fluxes

- 1)Peat extraction site (raised bog).
- 2)Extracted site without vegetation (raised bog).
- 3)Extracted site with grass and bush vegetation (raised and transitional bog).
- 4)Grassland on former/peat extraction site (transitional bog).
- 5)Cropland on former peat extraction site (transitional bog).
- 6)Coniferous forest stand (20-30 years, transitional bog).
- 7)Birch stand (20-30 years, transitional bog)
- 8)Raised bog reference site.
- 9)Transitional bog reference site.
- 10Blueberries plantation in former extraction site (transitional bog).
- 11Cranberries plantation in former extraction site (raised bog).
- 12 Wetland with reed cover (transitional bog)

Extracted site without vegetation

all b

Blueberry plantation

SNS120: Anthropogenic GHG emissions from organic forest soils...

- Synthesis report of the CO₂, N₂O, CH₄ and DOC emissions from organic forest soils in the Nordic and Baltic countries.
- Improved literature review based tier 2 EFs for the key sources of GHG emissions in organic forest soils in the Nordic and Baltic countries.
- A catalogue of GHG mitigation measures for forest management on organic soils.
- A common research agenda for future research to fill in any identified major data gaps.

Spreading of wood ash on organic soils

Valtra 6350 + modular spreader + wheel loader:
20 tonnes of ash, 10 ha;
Dose - 3 tonnes ha⁻¹;
Productivity 0.57 ha h⁻¹ (1.14 tonnes h⁻¹);
Cost 88 EUR ha⁻¹;
Deposition costs 39.50 EUR per tonne, savings - 30 EUP ha⁻¹.

Applications & future plans

- LIFE OrgBalt Demonstration of climate change mitigation measures in nutrients rich drained organic soils in Baltic States and Finland.
- European Climate Initiative 2017: INVESTIGATE Improving national GHG inventories for organic soils and mitigation potential of wet land use.
- ELFLA: Elaboration of equations for characterization of impact of wood ash on GHG emissions in deep drained organic soils.
- One of the most significant problems lack of funding sources for regional, climate change mitigation targeted projects.
- Organic soils are recognized as an issue in relatively small region.

Home works to do before setting post-2030 commitments in wetlands

management

- CO₂, CH₄ and N₂O emission factors for nutrient and organics rich (incl. semi-hydromorphic soils) forest (different ages and species), cropland ang grassland soils.
- Activity data (litter, ground floor) for modelling of carbon input in forest soils.
- **CH4 emission factor** for drainage ditches in forest land, cropland, grasland and wetland.
- **CO₂, CH₄ and N₂O emission factors** for rewetted forest lands and grassland.
- **DOC emission factors** for drained organic rich soils in cropland, grassland and forest land.

Home works to do before setting post-2030 commitments in wetlands management (cont.)

- Evaluation of impact of harvesting method (small openings, continuous forest cover) impact on GHG emissions from drained organic soils.
- Evaluation of impact of **wood ash and mineral fertilizers in forest** on GHG emissions at different stand development stages.
- **Impact of afforestation** on GHG emissions from drained and rewetted organics rich soils.
- Impact on GHG emissions of **innovative methods of crop management** on organic soils.

Thank you for attention!